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CALCULATION CF 3MALL ROCKET TRAJECTORIES
USIKG OXLY FOCKET-TO-LAUKCHER RADIAL VELOCITY DATA

by

J. E. Jackson and S. M. Radicella*
‘Natlonal Aerconautics and Space Administration
Goddard Space Flight Center '
Greenbelt, Maryland

A very accurate method for obtaining rocket trajectories

is the radio Doppler tracking system, known as DOVAP (Fef. 1
and 2). This system provides radial velocities (and by
integration radial distances) tetween the rocket and the
receiving site. 1In the DOVAP system, which was developed

bty the Pallistic Resezarch iLaboratory, a minimum of three

is calculated by a triangulation technicue. A simplified
version of this system has been developed by J. C. Seddon
(Ref. 3) in which only one station is reguired and in which
a two-axis interferometer is used to supplement the radial
velocity data. Since the Doppler measurement gives the

radial distance, and the interferometer gives the direction

cosines, their joint use provides the rocket position vector.

It has teen found, however, that a satisfactory interferometer

Tequires a fairly elestorate instrumentation, and that its
calitration is a very difficult procecdure. YHence extremely

skilled personnel are needed for its operation.

*0On leave from the University of Tucuman, Argentina




In the present paper a method is developed for calculating
rocket trajectories using only the Doppler data at one receiving
site. With this method it is possible to calculate small
rocket trajectories above the drag region (Z>70 km) with an
accuracy of about 1 km. 1In practice only a few simple operations
on a desk calculator are required in making use of this method.
To justify the method, a detailed and lengthy discussion
of its underlving theory is required. However the simplicity

£

of the method is readily seen from the surmary which is given

after the theory. The calculetions are tased upon a measure-
ment at the laurching site of the rocket radial velocity R
versus time using Doppler data at 73.6 Mc. If desired a
L.

counter can be used to determine R =) R dt and this
information can also be recorded durigg the rocket flight.

The method should be applicable to any small rocket
trajectory with a peak altitude less than 200 kilometers;
however since it has teen checked mainly with typical Nike-
Cajun data, the present report is based upon Nike-Cajun
trajectories. Examiration of Nike-Cajun performance data
(Ref. 4) shows that, at the time of the second stage burnout,
the horizontal range is of the order of 4 km. Assuming'a
maximum azimuth dispersion of the order of +30 dcgiee, will

place the "plane" of the trajectory at most Z km away from

the launch site. Since peak altitudes are typically in excess
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of 100 km, i*e radial distance T to the launch zite %3 wivern
with sufficient accuracy bty:

R? = %2+ 272
where:

X - horizonmtal displacement

Z = altitude
Even if the Doppler site is as mich 23 4 km zwavy from the

plane of the trajectory, the appreximation nade ir formuls
(1) introduces an error of less than 0.1% in the wvalue of P
at a radial distance of 100 km. Tor censistency with the
system of coordinates introduced later in Section III, the

Z and X directions are defined as the vertical direction and
the direction of the velocity vector, respectively, at the
peak of the trajectory. The origin of the coordinate system
is the projection of the Doppler receiving site upon the

XZ plane. 1In the simplified analysis (Sections I and I1)

the earth curvature and the Coriolis effects are reglected.

I. Calculation of Peak Time

Differentiating ecuaticon (1) wicli rest
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RR = XX + 27 (



{pny = (XX) (3)

For the accuracy desired, the Coriolis acceleration can be
neglected and we can assume that X is a constant. The error
introduced by this approximation in the final trajectory

determiration is shown in section III to be less than 0.5 km

for a typical Nike-Cajun flight. Applying equation (2) for

two times (t_ - t} and {to + t) syrometrical with respect
to the peal time t gives:

(RR), = (zD), __+ (X_ - XOX

to t to” to
and,
"Q“. - > .9- ’
L\ yes }t Tt (ZZ}t +t + (X + Xl—)x
o o
and since (zz), . = - (zD)
to+|... to-t
(RR) + (RR) = 2% X
to—t to+t to

Making use of {3), this last equation can be written:

RO, o ER L, 2R,
or
(RR) _+ (RR) = 2(RR) (4)
-t +t (s



where the following simplifications in notation have been made
in the subscripts: (t_ ) changed to (o), (t, - t) changed to
(-t) and (t, + t) changed to (+t). In this simplified
notation Xo’ Zo' and Ro will represent values of X, Z and
R corresponding to the peak time.

The calculation of peak time which is based upon formula
(4) will be explained with the 2id of Figure 1. This figure
shows a curve of RR as a function of time for the free fall
portion of a typical Nike-Cajun trajectory. The FR values
were ottained from ecquation (2), usirg theoretical wvalues
of 2Z and XX for the trajectory defined ty the parameters
shown in Figure 1 and assuming no Coriolis effects. The
ordinates A, B, and C correspond respectively to (Rﬁ)o,

(RR) and (RR)+t. Thus:

-t

B+ C= 2A

It should be noted that in the illustration C is a negative
quantity, as will always te the case for times (t, + t)
remote from peak. 1let the ordinates A', B' and C' correspond
to times (tO+A't), (to - t+A't) and (to+ t+A't).

This is equivalent to o&er—estimating the peak time. It is

readily seen that:

B' 4 C'~ B+ C

but that A' < A




Hernce:

B' + C' > 2a', if peak time estimate is too large. (5)

Conversely for ordinates A", B" and C", symmetrical with

respect to (to -A't):

B" + C" < 2A", if peak time estimate is too small. (5)
The ordinates A", B' and C" are not shown on figure 1.

A convenient form of equation (4) is as follows:

(2R)
max

(8

+ (RR) ,
min

2A (4!

2(RR)
(o}

The determination of the peak time t, can therefore be
made in the fol owing manner. First, the function Rﬁ .
is calculated and plotted. The values of (Ré)max and
(Ré)min are read from the graph and added. This gives a
very good estimate of the cuantity 24 and consequently of
the time to, which is the atscissa corresponding to the
ordinate A. One could also ottain this estimate directly
from interpolation btetween tabtulated values of RR as a function
of time. The graph is therefore mostly an aid in visualizing
the operation and in smoothing the experimental data points.
The value of té obtained by this method is usually within
a second of the correct value to'

The next step could te to select svmmetrical times

(ty - t) and (t! + t), such that corresponding ordinates B
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-and C will be clcze te (&

(e8]

the valuye of (2 + C) with the va
ordinate corresponding to té, »nd uss Tha critericrn Jdevelan
above {Formuilas (5) and (5)') to determine whether tlie first

estimate of ty should te increased or decreased. By

otserving the manner in which the difference (B8 + C) - 2A
is altered in successive trials, one can determine very

rapidly (by extrapelation or interpolation) the value of ty

n
n
®
N
2
L

with an accuracy of +0.2 It should te noted that
this is a rapicdly convergent process, and consequently that

the initial estimate of t_mneed not Le particuiarly accurate.

Vuhe

Thus it is rossible to bepin with the theoretical maximum

by

possitle value of tos namely the value t at wvhich R is
maximum (RR = O). 1In practice this estimate would be too

great ty 5 to 30 seconds. In general the method tased upon

(RR} and (RR) yields the answer with sufficient
max min

accuracy.

It is also of interest to note tha! ®P~. and RR
max min
occur at an altitude of no less than % (ZO) that 1s atove
the drag region for a nomnui Wixe-CTajun trajectory. The proof

of this statement is as follows., The maximmm and minimum

values of EE occur when

5 (g P e e




: 72 32 52 02
or z=L% + gf = Zj (1 + 8) where = = X
-2 -Z -7 72
Using the approximation Z = £, z= gt and h = 1 gt2 gives
2
Z -h=2h(1+ o)
o
or h = __EQ__
3+ 22

showing that the distance dropped,h)is less than _ O ,
3
I1I. Calculation of the Peak Altitude

This calculation is based upon formulas (2) applied at

atimet + t_:
o 1

(RR) = (XX) + (22) (6)
1 1 1

The left term of equation (6) is au experimentally determined

quantity. .
‘ . (RR)
. From equation (3): X = o (7
X5
and from (6):
(RR). = X(X + Xt )+ (Z - h)zZ (8)
1 o 1 o 1 1

Where hl is the distance fallen from peak during the time
interval tl. A method for calculating él and h1 is given

in the appendix. From (7) and (8):

-8 - ’



. ?
. . (RR) <

- RR - O - {7 - h \. =
(RR)1 ( )o 22 t (z, 1,21 0
o]
- . (R}i)z .
or: (RR), - RR) - —2— t -(z -h)Zz=0 (9)
o o]

Equation (9) can be re-written as a third degree equation:

A, 23+ 8, 22+¢c z +D=0 (10)
I o i 0 1 o
Where: A1 = Z1
Bo= (RR)_- (RR) - h Z
1
= _ p2l
C1 Ro A1
D= [®R), - &) JBZ -t ®RR)Z+ RZh %
1 1 ol Fo o o 171
Then, Zo is the solution of the equation:
£(z) = A 23 + Bl 2% + C1 z+ D=0 (11

The function f(z), for the same trajectory as was used in
deriving figure 1, and for t = - 105 seconds 1s shown in
figure 2, with coeffi~ients tased upon the correct peak time
(At = 0} and also tased upon r 1 second errors in peak time
(At = +1, andAt = -1). It was found necessary to use four
significant figures on R and five significant figures on R
(Calculated points shown as circles) to define the f(z)

function. This accuracy on R represents the very best that




can be expected from a Doppler measurement, however, in
practice R can at best be determined to three significant
figures. The f(z) function was therefore re-calculated for
the At = 0 curve using the best accuracy which can be achieved

experimentally and the calculated values were shown as crosses.

t
'.4 .

ac

~

It is seen that in p ce it should be quite difficult to

define the f(z) function, using experimental data. It is

alsc seen that forat = -1 sec there are two solutions
(Z0 = 168.4 km and Zo = 173.9 kxz), and that forAt = +1 sec
there ace no solutions. Even forAt = 0 the cubic (11) has

two positive solutions very close to each other, one of which
is the correct answer. A criterion for selecting the correct
solution, can te derived from the sign of ‘the tangent to the
curve representing equation (11). It can be shown that the
sign of the slope is, at the true solution, the same as the
sign of the time t

1 °T» in other words, it is - tive for

A

1
ascent values and positive for descent values. The atove
discussion suggests the undesirability of using equation (11)
directly for obtaining Zo unless extremely accurate values of
RR are available.

It is of interest to note that, when the correct peak
time is used, the minimum of the function f(z) occurs for =a
value of z close to Zo’ and that this minimum can be deter-

mined more accurately (by solving £'(z) = 0) than the f(z)

- 10 -
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of Zo can be obtained ty solving £'(z) = 0. A study of the
derivative formula chowed that it could te ottzined divectly

A very accurate csecond degree equation {wiiose sclution

requires less precise

I\

Xperimental values) can bte cttained

by assuming that

X = XT 12
o T (12)
where T ic the free fall time corresponding to the peak
altitude Zo’ i.e. T is defined by the following equation:

- 1 ‘ o T2y72

z = 3 (1+ & TAT (13)

G zgo

in which the term = T2 is a correction for the variation of g

with altitude. The

o

eviation of equation (13) is given in
the appendix. The guantity %%t which appeared in equation (8)

can then be evaluated as follows:

From (12)
2 2 - 2
)‘(2 _ XO _ XQ go(l +aAT )
. TZ 22
o
.2 :
. e -7
v2=To. " g (1+3 1%
2z g (1+232tDt °
. 2 2
. Z, X 1+ a7
and th = .10 _




2Z
o
~ T2
where = 1+3 T Y344 (T2 - 2 tz).
1+ 2a 2

For the example used in the text and for t =-105 seconds,

A= 1,002
Equation (B) then becomes:
(RR), = XX_+ X2t + (z_ - h)Z
1 o} 1 o 171
-2
. Z, A X
= (rRr) _ - -
o

22o

Changing (15) to a-quadratic in Zo gives:

2 22 2 -ZL(Ré) SRR +hzl)z -2 h %2
° 1 1 1 °

o 1

222+A22-2((RR)1°(RR)° +h}z - z2 oxx
(o] o) : o] (o]
Z
1
(RR), - (RR)
22—2{ 1| 0+h}2--LR2=0

The sclution of equation (16) is:

- 12 -
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(16)
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where .

(RR); - (RR) h
Pi = _o0 4+ __1
(z + l)zl 24 A

Since * is extremely close to unity equation (17) can be

written:
2
R 2
Z =p +/——9 +p (18)
o "1y 3 1
where
(RRY. - (R®
o - \RJI . (RR)O :1_
1
321 3

If » is unity, equation (16) can be written

322z -2 [®R), - @R +n 2] -
o 1 1 o 1 1
and using the notation of equation (10)

34 22+ 28 2 +C =0
1 o 1 o 1
This is the derivative of equation (10).

Thus the cutic of equation (10) has a minimum occurring
for a value of Z, very close to the correct answer. 1In
other words the cutic has two roots very close in value,
as seen in Fig. 2. The approximation mace in equation (12)

introduces a small error in Equation (15). Actually

X, = XT + ¢ which is equivalent to changing X< in equation (14)
o

- 13 -




\.2 ’Z.‘ ’\ :"L 'r oY 52 ]
X t= 1  _ 92 Li - £ 4 F_
22 X x2
o o

2z
o o
~ 25
This introduces a small correction . (= %) on the value of
o
in ecuation (17). It can te shown that the value of Z,
. ) .
ottained by using » = 1 (instead of ~ =1 - 2’) is too large
X
o

by an azmount = given by:
2
= ¥« ;‘i—) @
For a Nike-Cajun trajectory,%il is always less than 1 per cent.
For the trajectory used %to derive Figure 1, a one per cent
change in * introduced a change in Zo of 0.1 km. Thus formula
(18) is a very good approximation.
in formula (18) Rg, (Ré)l, and (éR)o are experimentally
determined quantities; h1 and il are calculated using the
A(t) and B(t) functions given in the appendix for the time
t, corresponding to (Ré>l and for the value of g corresponding

- .

to Zo' Since Z 1is unknown, it is necessary to calculate
o

(18) using first an estimated value of g which will give an

- 14



~estimate of Z . This estimate of Z can te used to re-

o o
calculate g and a better determination of Zo is then possible.
In practice only two attempts are sufficient since a good

first estimate of g is given by:

7 r
g(Ro) < g(Zo) < g( JRO (RR) t )

op
in which tp is the peak time. This criterion for estimating
Zo is based upon the fact that Zo is less than R, but greater
than \/Rg - (Ré)otp' The second part of the preceding statement
follows from the following relations:
22- 82 . %%, X %= (RR) and X > O .
o o o o o o t

IT11I. Errors Due to Approximations Made in the Theory

Discussion c¢f arrors

For more rigorous treatment consicdering the effects
of earth curvature znd rotation. it is convenient to use
coordinate axis X', Y', and Z' defined as follows. The Z'
axis is the vertical direction at peak and the X' axis is
in the direction of the horizontal velocity VH at peak.
"The Y' axis is chosen such that X', Y', Z' form a right-handed
system of coordinates. The time t is measured from peak
and it is positive for increasing X'. From this definition,

the rocket coordinates at peak satisfv the following relations:



X|=0 ii=v
o H

Y' =0 Y' =0
o]

' =2 Z' = 2

o o (o}

Due to the earth's curvature, the Doppler station will
+x2
be at a distance —2_ below the X'Y' »l

Re

defined as previously and Re is the radius of the earth.

Y

ne

whete Xo is

The relationship between this system of coordinates and the

one used previously is seen in Fig. (3) to be as follows:

X=X + X'
O
Y=4+ Y
2
X
z=2"+ 2
2R

e

Thus. the m;in effect of the earth's curvature is to introduce

the term §2. in the expression for Z. If Xo is less than

50 km, the %erm §Q_ is less than 0.25 km and usually

negligible; howevef if X, is 100 km, the term %g_ is about

0.8 km and it may be desirable to take it into cgnsideration.
The effect of the earth's rotation is to introduce a

Coriolis acceleration which is defined in terms of the earth's

rotation vector .. This vector has a magnitude of

0.7272 x 10°%4 radians/sec and it is directed towards the

- 16 -




North Star. At a given location it has a component * ., = 2
>

in the vertical direction and + = & cos @ in the North

iv

direction, where 8 is the latitude (8 is positive in the
’ P

Northerm hemisphere and negative in the Southern hemisphere).

The Coriolis acceleration a is:

i ow X
X

a=-2TXR=-2|3 @ Y
Y

k L i
z

and its components are:

= 2 (¢_ Y - y)
a (v wY )

X Z
a = 2 (v é - & i)
Y X Z

a = 2 (¢ X - w %)
Z Y

The effect of the Coriolis acceleration can be 1llustrated

by using an eastward trajectory, in which case LY = & and
N

lX = 0. Furthermore bty assuming that the trajectory is at

middle latitude in the Northern hemisphere, iy and e

ositive antities, having comparabtle magnitudes. This
qu s g P g

are

case will also represent a typical trajectory at Wallops

Island. The Coriolis velocities are then:

Vx = + zﬂ (.L»Z Y - Lty Z)dt




[ d
,s{ v . .
vV = -zj <« X dat

Y o Z
{t .
Vo= Zy %, Xdt
z O A
These expressiors c=n be further simplified considering that

Z > Y and X &/ constant giving:
15 g g

<
[
1

N

w (Z-2Z)=+ 2w _h
N o

V.= -2% Xt=-2% X

Y Z Z

V.=+ 2% Xt=2% X'
y2 N N

1nd Z due to the Coriclis 2ff.ct a1

t
& t2
N)O & a

3 et

e fi(t dt
ZO

oy 2
- L Xt
Z

o~

The corrections on X,

AX

ny

AX

e

AY

n

AY

"

Y - uw X't

Z

Iy

t .
AZ = 2* 5 Xt dt
NO

v X't

AzN

For a typical small rocket trajectory the region of interest
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-
h

corresponds to values of t tetween -150 seconds and +150
seconds, representing the altitudes between the peak and 100 km
below the peak. Taking the maximum values of t = + 150 seconds,

h= 100 km, X' = 50 km, and a,, = +_= = &
N z iz

-

0.5 x 1074 gives:

AX
AY

|

+0.5 km for +150 seconds and -0.5 km for -150 seconds.

i

-0.375 km for t = +150 and AZ = 0.375 km for t = +150,
It is seen that even the maximum values of z&x,llY;andZSZ

are quite small. However, if desired, a correction can be
made for the Coriolis effect, if the approximate direction

of the plane of the trajectory is known. An accuracy of

+10 degrees for this information is adequate to estimate the
X', Y', Z' components of « and hence calculate the Coriolis
terms. From the above discuscion it is seen that AX, AY,
Az, Vx, Vy, VZ are all expressed in terms of time and flight
parameters derived from the approximate analysis for a plane
non-rotating earth. The approximate analysis could therefore

be refined by letting:

X=X + X' t+A4X X=X +V
(o] (o] (o] X
X2 .
z2=2"+ 2+ = t) + V
5o+ AZ z =g |B() .

e

and introducing corresponding correction terms in Equations

s

4 and 18. Thus Equation (4) would become:




(RR) _ + (RR) - 4X * h = 2(RR) (19)
+t -t o N o

For the trajectory used in Fig. 1, the term AXOW,h is equal to

N
0.8 km?/sec which increased the peek time value by 0.28 second.

Similarly p, in Equation (18) should be changed to pi, where:

-p, -LZ2. [“"“1 - (RR)Q) (V) (20)

P, _

y/

vhere AZ and Vz are the Coriolis terms. To evaluate the
correction introduced by changing p1 to pi, the data in Figure !
were re-calculated for an East trajectory and with the
corresponding Coriolis terms. tarting with these more exact
values of Rﬁ and using equation (18), it was found that the
calculated valve of Z was too low ty 0.4 km. However using

o
the value of pi given in formula (20) the error in Z was

o
less than 0.1 km. In making this calculation the exact peak
time was used, to insure that the results would show only the
effect of the Coriolis acceleration.

In sumnary, the Coriolis terms introduce for the example
given a correction of 0.28 second in peak time and 0.4 km
in peak altitude. Thus a slight improvement in accuracy can
be achieved if desired. However even with this correction
it is believed that there will be an uncertainty of about
0.5 km in the final trajectory determination in view of the
approximations made in formula (1), (18), and in the A(t)

and B(t) functions.




IV Summary of Method

1. From the Doppler data calculate and plot a graph

of RR similar to that shown in Figure 1.

2. The peak time tp is obtained by calculating

(RR) = % [(Ria) + (RR) ) (4"
o max min

and reading the time at which Rk = (RR)O. Cne should attempt
to read this time to within an accuracy of 0.25 second.

2. The pezk altitude is ottrained from:

- u

QZ y,
} Z
= +1_.9_ + (18)

Zo pl 3 pl ’

h, (RR). - (RR)
where: P, = 7§.+ L o
3z
1

In Equation (18) the quantity (RR)1 corresponds to a convenient
time t  of the order of -100 seconds, giving values of RR
close to the maximum of the RR function, and hl and Z are

1
<

given by.

jos
h

At )
gz 1
o]

N
it

B(t ),
& 1
[s]

5 -

where the A(t) and B(t) functions are tatulared in the apvendix,
A preliminary calculation of (18) will be required using an

estimated value of g tased upon:
o

, < [ 2 :
g (Ro) g ()< g \/Ro - (RR)otp )

- 21 -
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velocity are th. " determined respectively from

and
- _ (R '
x = (B,
° X
o -

5. The complete trajectory can then be calculated

versus time from:

and
X=X +Xt¢t

6. Tor a slightly better accuracy a correction for
Coriolis effects can te made using the method given in
Section III. However this correction is not required if an
accuracy of the order of 1 km is satisfactory for the values

of X and Z versus time.




Appendix 1

1f Coriolis effects are negligitle, free fall calculations
for small rocket trajectories can be performed with a very
good accuracy by means of the formulas:

2
h=g, %5_[1 +a tz) = g A(L)

il

h = gt [1 + 22 tz] g B(t)

where: h = distarnce fallen from peak

e
|

= vertical velocity
B = value of g at the peak altitude Zo'
t = time from peak

= 2.42 x 1077 /sec? for a typical small rocket

12

trajectory.

If desired the value of h and é(=é) can subtsequently be
corrected for Coriolis effect as irndicated in section 111
of the report. For convenience the A(t) and B(t) functions
have teen tabulated for a representative value of 2 equal to
2.42 x 10‘7/sec2. The derivation of the formula for the A(t)
and B(t) functions is as follows:

RZ i
(R, + z°>

let g(z ) = ge
o

where g, = g at surface of the earth

- 23 -




~

and Re = earth's radius.

Then
2
R
g(z - h) = e
e (R +2 - h)?
e o
2
e R +2)2 R + 2
e o e o
= g(z) [1 + % ]
R, + 2
2 h
Y gz ) + (zy) b
R + 2
e (o)
Thus

g(Zo - h) = g(Zo) + kh

The value of k is relatively constant for values of Zo
ranging from 100 to 200 km as can be seen from the following

table:

2 \ 100 km ‘ 150 km 200 km

k ‘ 2.94 x 1076 2.87 x 10°® ‘ 2.81 x 1076

Thus the calculation of h and h consists in evaluating the

integrals . t
j [g(z ) + kh] dt
o

- 24 -




and

h=5b}.zdt
[}

Since the contribution of the kh term is small, an estimated

2

value of h given by h = 38(2 3t is adequate for calculating
o

the correction term kh. Thus g can be written:

The integration yields readily:
n = g(z )t (1 + X tz]

and 1
h = %e(2 \t2[1+_£12§
B oy’ 12 J

Thus the constant & in the expression for A(t) and B(t) is

given by:

~y
=3

-k
12

and the values of = for the 100 to 200 km altitude range vary
between 2.45 x 1077 and 2.34 x 107/, A value of = of 2.42 x 107/
which corresponds to an altitude of 125 km is considered
representative of the free-fall portion of most Rike-Cajun
trajectories and it was used in calculaiing the aly) an
functions.

It should be noted that if T is the total falling time

from peak (assuming no drag), egquation (21) gives:
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74, which i

{/]

the Equation (13) used in

]

)
the calculation of Zo. A plot of Equation (13) is given in
Figure 4.

Values of g(ZO) for Wallops Island are given on the

following table:

(‘z}m) km/ g?cz
0 .0097986
RO .0096173
/0 . 00385874
80 .0095577
90 .0095281
100 . 0094986
110 .0094693
120 . 0094401
13C .0094110
140 .0093821
150 . 0093533
160 . 0093246
170 . 0092961
180 .0092677
160 .0092394
200 .0092113
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Table of A(t) and B(t) Functions

t A(t) h B(t)

0 Q 0
) 5 12.50 5.00
- 10 53.60 10.00
15 112.51 15.00
20 200,02 20.00
25 312.55 25.01
30 430,10 30.01
35 $12.68 35.02
40 800.31  40.03
45 1013.00 45.04
50 1250.76 50.06
55 1513.60 55.08
60 1801.57 60.10
65 2114 .65 65.13
70 2452.92 70.17
75 2816.33 75.20
80 3204,96 80.25
85 3618, 82 85.30
S0 4057 .94 90.35
95 4522 .34 95,42
100 5012.10 100.48
105 5527 .22 105,56
110 6067.73 110.64
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-
t A(t) h B(t)
115 6633.66 115.74
120 7225.13 120.84
125 7842.03 125.95
130 8484 .56 131.06
135 9152.69 136.19
140 9846.45 141.33
145 10566.01 146 .48
150 11311.31 151.63
155 12082.29 156.80
160 12879.36 161.98
165 13702.21 167 .17
170 14551.01 172.38
175 15425,97 177.59
180 16327.02 182.82
185 17254.19 188.06
190 18207.76 193.32
195 19187.42 198.59
200 20193.60 203.87
205 21226.20 209.17
210 22285.27 214.48
215 23371.13 219,81
220 24483 .38 225.15
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The RR function for a typical Nike-Cajun

trajectory.

Graphical solution of the cubic

£(z) = Alz3 + Blz2 + Clz + D1 = 0, using
coefficients corresponding to a typical Nike-Cajun
trajectory. The effect of a + 1 second error

in peak time is also illustrated.
Coordinate system used for trajectory calculations.

Peak altitude Zo vs total falling time T.
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where . .
(RR)1 - (RR) h

pi -
(2 + A)z1 24A

Since * is extremely close to unity equation (17) can be

- R 2

(RRY. - (RR
b - (RR), (RR)o L0

written:

onN

where

1 3 ——
321 3

If A is unity, equation (16) can be written

3222 -2 @, - @ +n 2] 827 -0
°o 1 1 o 1 1

and using the notation of equation (10)
3A 22+ 2B 2z +C_ =0
1 © 1 o 1

This is the derivative of equation (10).

Thus the cutic of equation (10) has a minimum occurring
for a value of Z, very close to the correct answer. In
other words the cubic has two roots very close in value,
as seen in Fig. 2. The approximation made in equation (12)
introduces a small error in Equation (15). Actually

X = kT + { which is equivalent to changing X2 in equation (14)




